

Abstract

The ability of drones to get a different perspective of an environment becomes useful in off-roading, where the success of the vehicle depends on choosing the perfect route through the terrain. Through building an off-road spotting drone, Mercedes hopes to achieve an engaging and safe off road experience for their SUV market.

Approach

We decided to build our drone instead of buying one because of added control over the the drone's features and abilities.

Drone

- PX4 drone firmware
- LIDAR sensor for scanning

Server

- Raspberry Pi Server, running A* best path algorithm
- QGroundControl open source ground control

Display

- React Native app
- WebGL rendering used for creating the depth map

Qt

Off Road Spotting Drone NingHao He, Ryan Steinwert, Manveer Randhawa, Zhaoheng Chen

Overview

Mercedes is committed to improving the ex vehicles. In order to bring more convenion sponsored our team to build a drone integ real-time information on the terrain that improve off-road safety. We utilized a dron

- A 3D mapping of the environment.
- An algorithm to find the best path throug
- An intuitive app display showing obstacl

Architecture

perience customers have with their	Find
ience and utility to the user they	coml
grated with their SUVs, to provide	dron
t a driver cannot directly see and	algo
ne with multiple sensors to achieve:	this
	chal
gh the terrain ahead.	stroi
les and the best path to the user.	stab

Challenges

learning about the and ing bination of technologies such as best path and ne firmware orithms required to put together project was our team's greatest llenge. Ultimately we gathered a ng blend of techniques to give us a ole and reliable system.

Results

• Built a drone capable of taking off from landing trunk, and a scanning the ground in front of the vehicle and returning the LIDAR data back to the server.

• Built a server for communicating between the display and drone.

• Designed an app that is able to show a 3d model of the ground and live video from the drone with obstacle overlay, and help the user navigate the terrain.

Conclusion

Our drone system creates a 3d map of the environment in front of the vehicle and finds the best path through the terrain.