# Baskin Engineering

# Objective

Elderly and disabled persons have difficulty carrying personal items. To alleviate this issue, our goal is to design an assistive robot with autonomous tracking and self-stabilizing capabilities. The design features include:

- Two-wheeled rover for easy mobility with a turn radius of 0 degrees
- Self-balancing implemented using a PID controller
- Tracking the user using computer vision with a Jetson Nano • Raspberry Pi to control the main state machine for robot movement and to communicate with sensors through GPIO pins
- Simulation of the design provided by ROS and MATLAB



# **Capstone Project Assistive Self-Stabilizing Robot**

Omar Escareno, Khem Holden, Andrew Lei, Jeffrey Ng, Jornell Quiambao, Diego Reyes

## **Robot Model and Simulation Front view** Isometric view





Robot frame dimensions are 24in x 24in x 24in and is shown next to scaled human model standing at 5 feet



Gazebo Visualization Gazebo allows for visualization of the robot performance as well as the introduction of noise to sensors and wind to the environment



### **Sensor Visualization** Using Rviz, the vectors created by sensors, like the accelerometer, can be viewed in order to ensure proper simulation



### **Track Bars** Using a configurable color mask with multiple aspects, we can find a specific color to track

## **Computer Vision**



Foreground Mask Once the specific color is found, OpenCV can create a mask on the frame to highlight what lies within the mask





Linear Velocity

Using ROS, plotting the linear velocity of the motors show the robot's attempt at self-balancing; the current iteration of the PID controller in the Gazebo simulation has a linear velocity drift







**Region of Interest** After creating the mask on the frame, the highlighted object can be represented with a ROI box



