Smart Park
Christian Cortes, Omar Reyes, Angel Juarez, Angela Rodriguez, Isaiah Barron

Need:
With a high volume of commuting students at UCSC, and limited parking options; finding an available parking spot can be hard during peak hours.

Goal:
Help students find available parking spots with less hassle during peak hours.

Design Objective:
Manufacture a low-cost, low-power parking lot system that will detect open parking spaces in clear conditions. This product will track multiple parking spaces per sensor, and have moderate maintenance during extended use.

Client(s):
University of California, Transportation and Parking Service

Machine Learning: Faster R-CNN Model
- Modified pre-trained detection model, to identify vacant/taken spots using transfer learning
- Trained with images from custom small-scale parking lot model
- Overlay bounding box on original frame indicating spot availability and confidence
- Compressed original prediction graph into a TensorRT model for microprocessor
- Inference at real-time using Jetson Nano

CAD Design:
- Parking lot render simulates camera coverage.

App:
- App provides campus map overview of selectable parking lots
- Any lot selection will provide the user with detailed lot of vacant/occupied parking spots
- On the selected parking lot page, “Update” button provides an update on parking spots

Communication Interface:
- 1) Mobile App sends a query request to the Web Server
- 2) The Web Server connects to MySQL and forwards the request to MySQL
- 3) MySQL receives the request and sends the response back to the Web Server
- 4) The Web Server parses the response and forwards it to the Mobile App

Acknowledgements:
A special thanks to Dustin Franklin, of Nvidia, for his support and David Kooi, our TA, for his guidance.